Fragment-Based Drug Discovery Using a Multidomain, Parallel MD-MM/PBSA Screening Protocol

نویسندگان

  • Tian Zhu
  • Hyun Lee
  • Hao Lei
  • Christopher Jones
  • Kavankumar Patel
  • Michael E. Johnson
  • Kirk E. Hevener
چکیده

We have developed a rigorous computational screening protocol to identify novel fragment-like inhibitors of N(5)-CAIR mutase (PurE), a key enzyme involved in de novo purine synthesis that represents a novel target for the design of antibacterial agents. This computational screening protocol utilizes molecular docking, graphics processing unit (GPU)-accelerated molecular dynamics, and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) free energy estimations to investigate the binding modes and energies of fragments in the active sites of PurE. PurE is a functional octamer comprised of identical subunits. The octameric structure, with its eight active sites, provided a distinct advantage in these studies because, for a given simulation length, we were able to place eight separate fragment compounds in the active sites to increase the throughput of the MM/PBSA analysis. To validate this protocol, we have screened an in-house fragment library consisting of 352 compounds. The theoretical results were then compared with the results of two experimental fragment screens, Nuclear Magnetic Resonance (NMR) and Surface Plasmon Resonance (SPR) binding analyses. In these validation studies, the protocol was able to effectively identify the competitive binders that had been independently identified by experimental testing, suggesting the potential utility of this method for the identification of novel fragments for future development as PurE inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring.

With the rapid development of computational techniques and hardware, more rigorous and precise theoretical models have been used to predict the binding affinities of a large number of small molecules to biomolecules. By employing continuum solvation models, the MM/GBSA and MM/PBSA methodologies achieve a good balance between low computational cost and reasonable prediction accuracy. In this stu...

متن کامل

Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA

In the drug discovery process, accurate methods of computing the affinity of small molecules with a biological target are strongly needed. This is particularly true for molecular docking and virtual screening methods, which use approximated scoring functions and struggle in estimating binding energies in correlation with experimental values. Among the various methods, MM-PBSA and MM-GBSA are em...

متن کامل

Molecular Recognition in a Diverse Set of Protein-Ligand Interactions Studied with Molecular Dynamics Simulations and End-Point Free Energy Calculations

End-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed understanding of molecular recognition in protein-ligand interactions. The binding free energy can be used to rank-order protein-ligand structures in virtual screening for compound or target identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to 14 small molecules using...

متن کامل

Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models.

Here, we systematically investigated how the force fields and the partial charge models for ligands affect the ranking performance of the binding free energies predicted by the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) approaches. A total of 46 small molecules targeted to five different protein receptors were emp...

متن کامل

Machine learning accelerates MD-based binding pose prediction between ligands and proteins

Motivation Fast and accurate prediction of protein-ligand binding structures is indispensable for structure-based drug design and accurate estimation of binding free energy of drug candidate molecules in drug discovery. Recently, accurate pose prediction methods based on short Molecular Dynamics (MD) simulations, such as MM-PBSA and MM-GBSA, among generated docking poses have been used. Since m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 2013